Industrial Utility Efficiency    

Technology

Turndown designates the operating range of an aeration blower or a blower system – and it can often be the most important factor in determining the ability of a system to match process demand. It is also critical to the system’s energy optimization. Unfortunately, in designing blower systems and controls turndown is not always given the attention that its importance merits. Here’s a look at the critical nature of turndown in wastewater treatment plants and recommendations for ensuring adequate turndown when utilizing Positive Displacement (PD) and centrifugal blowers.

Aeration Blowers

Efficiency compares the inputs used by a system to the outputs produced. It is a commonly used concept, but one which is prone to a great deal of misuse in many industries. This article provides insight into the parameter known as “efficiency,” how it’s calculated, and importantly, it’s uses and limitations in predicting blower energy consumption and comparing alternate system designs.

Industrial Blowers

Blower systems designed to deliver continuous airflow at pressures of 50 psig or below are critical to the operation of many processes including wastewater treatment, pneumatic conveying, fluid catalytic cracking, and fermentation to name a few. Many circumstances could arise that require an operator to require a rental blower for a period.

Rough Vac

Many heat-treating applications put difficult demands on vacuum pumps in general and oil-sealed pumps, in particular. Byproducts from the heat-treating process can contaminate the vacuum pump oil and create higher vapor pressures that cause deteriorated vacuum levels in the heat-treating chamber, or buildup and blockages in the pump mechanism.

Medium/High Vac

The European XFEL is a new international research facility, where 12 European countries participate. The non-profit society European XFEL GmbH is responsible for the construction and operation of the X-ray laser. DESY (Deutsches Elektronen-Synchrotron), one of the leading centers for the investigation of the structure of matter worldwide and a long-term partner of Pfeiffer Vacuum, is the main share- holder.

Measurement

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.

Purification

Contamination such as humidity, oxygen or microbiological ingress can impact drug stability throughout the product life cycle. To prevent the risks of stability failure of highly moisture sensitive drugs (e.g. dry powder for inhalation), or the risk of biological ingress of parenteral drugs, highly sensitive integrity tests are required. Most test methods are very challenging in regards to time, effort, complexity or the limitation of sensitivity and detection range.

Vac Generation

Using suction cups and air-driven vacuum pumps is a preferable gripping and handling method of corrugated cardboard materials and boxes in carton-machines like case/carton erectors and rotary cartoners. Robot based applications, like palletizing and de-palletizing, are other examples where the best practice technology for gripping and handling is by suction cups and air-driven vacuum pumps.  
Blower & Vacuum Best Practices Magazine spoke with Mr. Ed McGovern (VP Sales & Business Development) of PIAB North America.
Relatively few people realize that for a variety of industrial manufacturing applications, from air knife drying to simple blow-off nozzles, the use of high pressure compressed air that bleeds into the atmosphere represents a significant waste of energy.  
Nearly all vacuum pumping technologies have some degree of sensitivity to inlet particulate contamination.  Since everything from a vacuum assisted production process ends up at the inlet of the vacuum pump, it is important to figure out how to best protect the pump in that particular environment.  In many cases, the expected service life of a vacuum pump comes down to how well it is protected from incoming contamination.