Industrial Utility Efficiency    

Technology

Turndown designates the operating range of an aeration blower or a blower system – and it can often be the most important factor in determining the ability of a system to match process demand. It is also critical to the system’s energy optimization. Unfortunately, in designing blower systems and controls turndown is not always given the attention that its importance merits. Here’s a look at the critical nature of turndown in wastewater treatment plants and recommendations for ensuring adequate turndown when utilizing Positive Displacement (PD) and centrifugal blowers.

Aeration Blowers

Efficiency compares the inputs used by a system to the outputs produced. It is a commonly used concept, but one which is prone to a great deal of misuse in many industries. This article provides insight into the parameter known as “efficiency,” how it’s calculated, and importantly, it’s uses and limitations in predicting blower energy consumption and comparing alternate system designs.

Industrial Blowers

Blower systems designed to deliver continuous airflow at pressures of 50 psig or below are critical to the operation of many processes including wastewater treatment, pneumatic conveying, fluid catalytic cracking, and fermentation to name a few. Many circumstances could arise that require an operator to require a rental blower for a period.

Rough Vac

Many heat-treating applications put difficult demands on vacuum pumps in general and oil-sealed pumps, in particular. Byproducts from the heat-treating process can contaminate the vacuum pump oil and create higher vapor pressures that cause deteriorated vacuum levels in the heat-treating chamber, or buildup and blockages in the pump mechanism.

Medium/High Vac

The European XFEL is a new international research facility, where 12 European countries participate. The non-profit society European XFEL GmbH is responsible for the construction and operation of the X-ray laser. DESY (Deutsches Elektronen-Synchrotron), one of the leading centers for the investigation of the structure of matter worldwide and a long-term partner of Pfeiffer Vacuum, is the main share- holder.

Measurement

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.

Purification

Contamination such as humidity, oxygen or microbiological ingress can impact drug stability throughout the product life cycle. To prevent the risks of stability failure of highly moisture sensitive drugs (e.g. dry powder for inhalation), or the risk of biological ingress of parenteral drugs, highly sensitive integrity tests are required. Most test methods are very challenging in regards to time, effort, complexity or the limitation of sensitivity and detection range.

Vac Generation

Using suction cups and air-driven vacuum pumps is a preferable gripping and handling method of corrugated cardboard materials and boxes in carton-machines like case/carton erectors and rotary cartoners. Robot based applications, like palletizing and de-palletizing, are other examples where the best practice technology for gripping and handling is by suction cups and air-driven vacuum pumps.  
In recent years, there have been many changes in wastewater treatment. Most modern processes control three cycles: DO, NH4, and NO3, and all of the processes require high volumes of air. Undeniably, the low pressure air system uses more electrical power than the rest of the wastewater treatment plant combined. The blower packages in these systems can be equipped with low noise enclosures, fixed speed or variable speed drives, and can include all the instrumentation needed for self-protection.  
Aeration systems at wastewater treatment facilities present significant, cost-effective energy savings opportunities. Aeration—the introduction of air into the wastewater stream to support anaerobic bacteria and mixing—is a key function at the majority of wastewater treatment facilities in North America. Aeration accounts for 25-60 percent of total energy consumption at wastewater treatment facilities , and a significant piece of operating budgets sector-wide.
Blower & Vacuum Best Practices® Magazine interviewed Ms. Julie Gass P.E., Lead Process Mechanical Engineer, from Black & Veatch on trends in the wastewater treatment industry especially pertaining to new technology aeration blowers and energy efficiency.
A large custom leather furniture manufacturer switches from rotary screw vacuum pumps to blowers for CNC router table hold down, and saves big on electricity, maintenance expenses and floor space.
This food industry factory, located in California, was spending $386,533 annually on energy to operate their compressed air system. This system assessment detailed eleven (11) project areas where yearly energy savings totaling $154,372 could be found with a investment of $289,540. A local utility energy incentive, paying 9 cents/kWh, provided the factory with an incentive award of $159,778. This reduced the investment to $129,762 and provided a simple ROI of ten months on the project.
Bottling companies and breweries, in California, are benefiting from a three-step system assessment process aimed at reducing the electrical consumption of their compressed air systems. The three-step process reduces compressed air demand in bottling lines by focusing on open blowing and idle equipment, and then improves the specic power (reducing the energy consumption) of the air compressors.
You may be wise to watching the demand meter or shifting heavy loads to off-peak hours, but those are not your only options. With advanced energy management technology, you can automate control of energy from refrigeration compressors, pumps, and other equipment so that your facility runs at optimal efficiency, you pay the lowest possible rates, and you can participate in incentive programs that pay you for unused kilowatts.
The concept offers new possibilities for generating positive pressure or vacuum in a variety of applications. “By applying screw compressor technology to low-pressure air compression, we’ve greatly improved efficiency,” said Pierre Noack, President and CEO of Aerzen USA. The Delta Hybrid has seven patents or patent applications, making it one of the most innovative products in compression technology.
The Focus on Energy Water and Wastewater Program was developed to support the industry because of the enormous potential to reduce energy use without compromising water quality standards. Through the program, numerous water and wastewater personnel have learned that energy use can be managed, with no adverse effects on water quality. Most locations that have saved energy have found improved control and treatment.
The Hoffman U.S. Machinery Division was established in 1905 outside of East Syracuse, New York. The initial product was an exhauster for the dry cleaning industry — pulling a steam vacuum across the garments. The Company grew and soon after began discovering industrial applications for their technologies. After the war period, during which Hoffman manufactured ball bearings and operated it’s own foundry, the company began discovering new industrial markets for it’s products. A significant part of their business was in the wastewater treatment industry.