Industrial Utility Efficiency    

Purification

Contamination such as humidity, oxygen or microbiological ingress can impact drug stability throughout the product life cycle. To prevent the risks of stability failure of highly moisture sensitive drugs (e.g. dry powder for inhalation), or the risk of biological ingress of parenteral drugs, highly sensitive integrity tests are required. Most test methods are very challenging in regards to time, effort, complexity or the limitation of sensitivity and detection range.
Triethylene glycol (TEG) dehydrators are the most prevalent technology for removing water vapor from natural gas . Molecular sieve dryers are also quite common in gas processing plants. Molecular sieve units have operating processes similar to industrial heat-regenerated compressed air dryers. Natural gas, however, often needs to be purified at the wellhead before reaching the processing plant. Deliquescent dehydrators are normally used, in remote locations where no power supply exists, to dry small gas volumes located between the wellhead and these main treatment plants. The most common applications are instrument gas, fuel gas, sales gas, and emissions mitigation.
Compressed Natural Gas (CNG) is an alternative fuel source (to diesel and gasoline) with far-reaching benefits to North America. Strategically important benefits include energy independence, improved air quality, job creation, and lower and more stable fuel prices. This paper discusses natural gas desiccant dryer requirements in Natural Gas Vehicle (NGV) refueling stations, compares deliquescent to desiccant dryers and reviews two on-site field gas upgrading examples in displacing diesel fuel.
Energy efficiency and sustainability solutions are often associated with more obvious initiatives--such as installing compact fluorescent bulbs—but those solutions fail to dig deeper for the “hidden gems” that can have a much greater impact. For manufacturing and building engineers or anyone else dealing with high potential energy consumption and inrush current demands, compressed air systems are one of the first places to look for significant energy savings and greater sustainability.
Nearly all vacuum pumping technologies have some degree of sensitivity to inlet particulate contamination.  Since everything from a vacuum assisted production process ends up at the inlet of the vacuum pump, it is important to figure out how to best protect the pump in that particular environment.  In many cases, the expected service life of a vacuum pump comes down to how well it is protected from incoming contamination.