Industrial Utility Efficiency    


Originally built in 1958, the CMA wastewater treatment plant serves 14,000 residents, as well as businesses, in Clearfield Borough and surrounding portions of Lawrence Township, Clearfield County, PA. From the start, the plant consistently met water quality and effluent parameters as specified in its National Pollutant Discharge Elimination System (NPDES) permit throughout. However, new mandates in 2010 and the need for ongoing improvements drove the need for plant upgrades.  
Hoffman & Lamson has been manufacturing multi-stage centrifugal blowers for a long time. Lamson was founded in 1880, and Hoffman was established in 1905. Now a single entity under the Gardner Denver Nash Division, the company has some serious resources to complement its 100-plus years of blower expertise.
With the energy used by water and wastewater treatment plants in the United States accounting for 35 percent of a typical local government’s energy budget, GE formally introduced its new ZeeLung* Membrane Aerated Biofilm Reactor (MABR) technology that is four times more energy efficient than existing aeration systems. Aeration for biological treatment is the largest energy consumer in a wastewater treatment plant, typically representing 60 percent of a facility’s power usage.
Aeration tanks use bubble diffusers to distribute oxygen within the wastewater. Fine bubble diffusers, or those that produce a large amount of very small air bubbles, first began to become popular in the 1980s, as they had a much higher efficiency than coarse bubble diffusers. Fine bubble diffusers generally feature a membrane that allows airflow to pass from the piping system on the floor of the tank through the body of the diffuser and the membrane, providing oxygen into the wastewater for treatment.
The design of wastewater treatment plants is changing, and it has something to do with LEGO® bricks. More specifically, it has to do with how large and complex LEGO structures are built. If you follow the instructions carefully, you build module after module, eventually piecing them together to create a fully functional and cohesive unit.
A replacement strategy for air compressors and blowers integrated into a system-level approach towards energy efficiency can deliver significant energy savings and optimize equipment performance. At the Victor Valley Wastewater Reclamation Authority, a blower replacement project yielded annual energy savings of more than 928,000 kWh and $98,000 in energy costs, while improving the reliability of its secondary treatment process. In addition, the agency qualified for important incentives from its electric utility — significantly improving the project economics and resulting in a 2.94-year payback.
The overall wastewater treatment process is complex, and each step is integral to ensuring water is properly purified. Effluent ends up in the plants, containing substances that must be removed before the water can be properly cleaned and returned for use. The range of potential contaminants is almost endless and can include food, pulp, waste, or other substances. Afterwards, the water requires further scrubbing, with the aid of bacteria. It is in this part of the process that compressed air (ideally provided by energy-efficient rotary lobe blowers) plays a vital role.
A facility audit examined the plant electrical energy consumption to find ideas to reduce plant energy use while meeting the process demand. Based on discussions with plant staff and a brief review of the process, it was decided to focus the effort on reducing the electrical energy required to provide aeration air to the secondary activated sludge process. The aeration air blowers were the largest consumers of electrical power in the plant and significantly less efficient than the newer blowers that have been introduced to the market place in the recent years.
Industrial standards provide a common means of understanding and communicating performance. This article examines the rationale and applications of the Compressed Air & Gas Institute’s standards for determining the energy efficiency of low-pressure blower packages.
This guide explains three blower technologies and,using examples from actual wastewater plants, describes the most effective technology for particular applications and why. Of course there is no substitute for a consultation specific to your application; however, the guide can help raise the right questions and ensure a productive vendor and technology evaluation process.
High speed bearing technology is applicable for aeration blowers operating at much higher speeds than the typical 60Hz, 3600RPM for cast multistage units. High Speed Turbo (HST) units are usually single stage (though some utilize multiple cores) and rotate from 15,000 to 50,000RPM. At such high speeds, standard roller bearings cannot offer the industry standard L10 bearing life. Two types of bearing technologies have come to dominate the wastewater treatment market for these types of machines: airfoil and magnetically levitated. Often the two technologies are compared as equals, however, in many significant ways they are not.