Industrial Utility Efficiency    

Industries

"The most impressive feature of this year’s PROCESS EXPO was the tremendous quality of customers in attendance," said Gil Williams, Chairman of the Food Processing Suppliers Association (FPSA) and President of Poly-clip System USA and Canada. “During the show we were able to meet with a number of important customers and sit down with prospects that we are confident will lead to new sales in the short to medium term, helping us close out 2015 on a strong note and jump start our sales efforts in 2016.”
Within the “zero-loss” culture at General Mills, plant personnel identify and optimize major energy users in each facility. Common opportunities include: the optimization of dryers, ovens and freezers; compressed air optimization projects; improvements to building heating and cooling system; and lighting replacement innovations. In addition, engineers at General Mills have started to explore new energy-saving opportunities within the vacuum and blower systems at their production facilities. To better understand how any production system is addressed at General Mills, an examination of the company’s energy management methodology is required.
Many manufacturing processes are like offensive linemen. When everything is running smoothly, nobody tends to notice. But, when an application starts creating a hazardous work environment (think too many blindsided sacks), or the products start spoiling (think shutout or a losing season), you best believe someone will start paying attention.
Yeast fermentation is a vital process in the production of many food and beverage products. It is a common application within breweries, bakeries, and wineries, along with other facilities where biogas and ethanol are produced. In these facilities, fermentation tanks filled with a reaction liquid are often supplied with air from blowers. Recently, there has been a trend in the adoption of high-speed turbo blowers for yeast fermentation applications, as the blower technology can yield large energy savings if properly installed and controlled.
In open end pipe line suspension flow, or dilute phase pneumatic conveying, proper particle velocity is critical to continuing productivity and product quality. Until recently, measurement of actual particle velocity within the pipe has not been practical outside the laboratory. The plant operating personnel depend on a much less accurate metric - estimating the conveying air velocity in the pipe and relating that to particle velocity.
In open end pipe line suspension flow, or dilute phase pneumatic conveying, proper particle velocity is critical to continuing productivity and product quality. Until recently, measurement of actual particle velocity within the pipe has not been practical outside the laboratory. The plant operating personnel depend on a much less accurate metric - estimating the conveying air velocity in the pipe and relating that to particle velocity.
Vacuum and blower systems are commonplace in food manufacturing facilities. Bakeries, flour mills, breweries, and dairy plants are just a few of the many sites where vacuum pumps and blowers are used. While these facilities may leverage both types of systems, vacuum pumps are more commonly used when processing meats, fish and poultry. Other common vacuum applications include maple sap extraction, confection, vacuum coating, and juice distillation.
Meat packaging plants have long used vacuum pumps as a way to remove air and reduce the amount of oxygen in their products’ plastic packaging. Vacuum packaging extends the meat’s shelf life while protecting its flavor and exposure to outside elements, such as freezer burn and bacteria.
Energy for the entire Ernst Sutter AG company – and consequently the Suttero Bazenheid premises as well – is generated via hydropower. In addition, around 75% of the energy from refrigeration is also used to generate hot water. When creating vacuum for packaging, Suttero Bazenheid relies on a centralized vacuum system from Busch. This is significantly more energy-efficient in operation than decentralized vacuum supplies on individual packaging machines. As a result, Ernst Sutter AG has created a production plant that corresponds to the latest standards, both from a technical and ecological perspective. 
Energy for the entire Ernst Sutter AG company – and consequently the Suttero Bazenheid premises as well – is generated via hydropower. In addition, around 75% of the energy from refrigeration is also used to generate hot water. When creating vacuum for packaging, Suttero Bazenheid relies on a centralized vacuum system from Busch. This is significantly more energy-efficient in operation than decentralized vacuum supplies on individual packaging machines. As a result, Ernst Sutter AG has created a production plant that corresponds to the latest standards, both from a technical and ecological perspective.